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1 Introduction

Hadron-hadron collisions predominantly give rise to leading particles of the same type as

those in the incoming beams and carrying a large fraction of the momentum of incoming

particles. The spectrum of leading particles approximately scales with the centre-of-mass

energy, a property known as limiting fragmentation [1]. The properties of the accompany-

ing final state are also universal when studied as a function of the centre-of-mass energy

available after excluding the leading particles [2, 3].

Events with a final-state proton carrying a large fraction of the available energy, xL,

but a small transverse momentum, pT , have been studied in detail in high-energy hadron-

proton collisions [4–6]. More recently, the HERA experiments reported measurements of

– 1 –



J
H
E
P
0
6
(
2
0
0
9
)
0
7
4

the production of leading protons in ep collisions [7, 8]. Several mechanisms have been sug-

gested to explain the production of leading protons. None of them are, as yet, amenable

to calculations based on perturbative quantum chromodynamics (pQCD). This is, in part,

a consequence of the small values of pT of the leading proton which necessitates a non-

perturbative approach. Some models [9–13] are based on the Regge formalism, with leading

proton production occurring through t-channel exchanges, both isoscalar and isovector, no-

tably of the Pomeron, pion and Reggeon trajectories. These exchanges mediate the interac-

tion between the proton and the hadronic fluctuations of the virtual photon. Other models

retain quarks and gluons as fundamental entities, but add non-perturbative elements, such

as soft-colour interactions (SCI) [14]. Alternatively, the concept of fracture functions [15]

offers a QCD framework in which to describe the leading baryon momentum spectra.

This paper presents measurements of leading proton production in e+p collisions,

e+p → e+Xp, with a four-fold increase in statistics compared to an earlier measurement [7].

High-energy protons with low transverse momentum carrying at least a fraction xL=0.32 of

the incoming-proton momentum were measured in the ZEUS leading proton spectrometer

(LPS) [16]. All the six LPS stations are used, for the first time, to perform the measure-

ments presented in this paper. The cross sections are presented as a function of the proton

variables xL and p2
T . The dependence on the Bjorken variable, x, and on the photon virtu-

ality, Q2, was also studied and compared to that of the inclusive deep inelastic scattering

(DIS) reaction e+p → e+X. The measurements cover the kinematic range Q2 > 3 GeV2

and 45 < W < 225 GeV, where W is the total mass of the photon-proton system. The

data for xL > 0.93 were used in an earlier study [17] to extract the diffractive structure

function of the proton.

The leading proton structure function, FLP
2 , defined in section 3, which can be iden-

tified with a fracture function, is also presented. The latter parameterises the momentum

spectra of leading particles through parton distribution functions in the proton. This ap-

proach can be incorporated in Monte Carlo (MC) programs simulating hadronic final states

in pp interactions at the LHC [18] and extended cosmic-ray showers [19, 20].

2 Experimental set-up

The measurements were performed with data collected in 1997 at the ep collider HERA

using the ZEUS detector, when HERA operated with a proton beam energy Ep = 820 GeV

and a positron beam energy Ee = 27.5 GeV.

A detailed description of the ZEUS detector can be found elsewhere [21]. A brief

outline of the components which are most relevant for this analysis is given below.

Charged particles were tracked in the central tracking detector (CTD) [22], which

operated in a magnetic field of 1.43T provided by a thin superconducting coil. The CTD

consisted of 72 cylindrical drift chamber layers, organized in 9 superlayers covering the

polar angle1 region 15◦ < θ < 164◦. The transverse-momentum resolution for full-length

1The ZEUS coordinate system is a right-handed Cartesian system, with the Z axis pointing in the proton

beam direction, referred to as the “forward direction”, and the X axis pointing left towards the center of

HERA. The coordinate origin is at the nominal interaction point.
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tracks was σ(pT )/pT = 0.0058pT ⊕ 0.0065 ⊕ 0.0014/pT , with pT in GeV.

The high-resolution uranium-scintillator calorimeter (CAL) [23] consisted of three

parts: the forward (FCAL), the barrel (BCAL) and the rear (RCAL) calorimeters. Each

part was subdivided transversely into towers and longitudinally into one electromagnetic

section (EMC) and either one (in RCAL) or two (in BCAL and FCAL) hadronic sections

(HAC). The smallest subdivision of the calorimeter is called a cell. The CAL energy res-

olutions, as measured under test-beam conditions, were σ(E)/E = 0.18/
√

E for electrons

and σ(E)/E = 0.35/
√

E for hadrons, with E in GeV.

The position of the scattered positron was determined by combining information from

the CAL, the small-angle rear tracking detector [24] and the hadron-electron separator [25].

The LPS [16] was used during the data-taking period 1994−2000 to detect positively

charged particles scattered at very small angles and carrying a large fraction of the longi-

tudinal momentum of the incoming proton. It consisted of 54 planes of silicon microstrip

detectors grouped into six stations, S1 to S6, and located along the outgoing proton beam

line between Z = 20 m and Z = 90 m.

The reconstruction program built tracks considering S1, S2, S3 and S4, S5, S6 as two

independent spectrometers, called s123 and s456, respectively. Among all hit combinations

in s123 and s456, the track with more planes was chosen, with the requirement that the

track passed in at least two stations of the same spectrometer. Because of the different

phase space covered by the two spectrometers, a track cannot pass through pairs of stations

in both s123 and s456. Hence a track is assigned to only one spectrometer.

The alignment procedure is identical for s123 and s456 as far as relative alignment

of single planes in a pot is concerned. The spectrometer s456 was aligned first [16]. A

small sample of s456 tracks passing through S1 was used to fix S1 position. The remaining

stations S2 and S3 were independently aligned by using coincidences with S1. Their posi-

tions were fitted by requiring the extrapolated vertex position to be at the nominal ZEUS

interaction point and by requiring the diffractive peak to be at xL = 1.

During data taking, the stations were inserted very close to the proton beam (typically

a few mm). Charged particles inside the beampipe were deflected by the magnetic field

of the proton-beamline magnets and measured in the LPS with a resolution better than

1% on the longitudinal momentum and of 5 MeV on the transverse momentum. The beam

transverse momentum spread at the interaction point was ≈ 40 MeV in the horizontal plane

and ≈ 90 MeV in the vertical plane and dominated the transverse-momentum resolution

which is 20% on average.

A forward neutron calorimeter (FNC) [26] was installed in the HERA tunnel at θ = 0◦

and at Z = 106m from the interaction point in the proton-beam direction. The FNC,

a lead-scintillator calorimeter, had an energy resolution for hadrons σ(E)/E = 0.70/
√

E,

with E in GeV, as measured in a test beam. The calorimeter was segmented vertically into

14 towers. Three planes of veto counters were located in front of the FNC to reject events

in which a particle showered in inactive material along the beamline upstream of the FNC.

The luminosity was measured from the rate of the bremsstrahlung process ep → eγp.

The resulting small-angle energetic photons were measured by the luminosity monitor [27],

a lead-scintillator calorimeter placed in the HERA tunnel at Z = −107 m.
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Figure 1. Schematic diagram of the reaction e+p → e+Xp.

3 Kinematics and cross sections

Figure 1 illustrates semi-inclusive leading proton production in ep collisions. Four kinematic

variables are needed to describe the reaction e+p → e+Xp. They are defined in terms of

the four-momenta of the incoming and outgoing positron, k and k′, and of the incoming

and outgoing proton, P and P ′, respectively.

The Lorentz-invariant kinematic variables used in inclusive studies are Q2 = −q2 =

−(k − k′)2, the virtuality of the exchanged photon; x = Q2/(2P · q) and the inelasticity,

y = q · P/(k · P ) ≃ Q2/(sx); W 2 = (P + k − k′)2 = m2
p + Q2(1 − x)/x, the square of

the photon-proton centre-of-mass energy. In these equations, mp is the mass of the pro-

ton and
√

s = 300 GeV is the e+p centre-of-mass energy. Among these variables, only

two are independent.

Two additional variables are required to describe the leading proton. They are chosen

as the momentum fraction carried by the outgoing proton

xL =
P ′ · k
P · k

and its transverse momentum with respect to the direction of the incoming proton,

pT . In terms of these variables, the square of the four-momentum transfer from the target

proton is given by

t = (P − P ′)2 ≃ −p2
T

xL
− (1 − xL)2

xL
m2

p,
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where the second term is the minimum kinematically-allowed value of |t| for a given xL.

The variable t is the square of the four-momentum of the exchanged particle.

The differential cross section for inclusive e+p → e+X scattering, in the Q2 region of

this analysis, is written in terms of the proton structure function, F2(x,Q2), as

d2σe+p→e+X

dxdQ2
=

4πα2

xQ4

(

1 − y +
y2

2

)

F2(x,Q2)(1 + ∆), (3.1)

where ∆ is a correction that takes into account the contribution of the longitudinal structure

function, FL, and of electroweak radiative effects. Similarly, the differential cross section

for semi-inclusive leading proton (LP) production can be written in terms of the leading

proton structure function, F
LP(4)
2 (x,Q2, xL, p2

T ), as

d4σe+p→e+Xp

dxdQ2dxLdp2
T

=
4πα2

xQ4

(

1 − y +
y2

2

)

F LP(4)

2 (x,Q2, xL, p2
T )(1 + ∆LP), (3.2)

where ∆LP is the analogue of ∆.

The structure function F
LP(4)
2 (x,Q2, xL, p2

T ) corresponds to the proton-to-proton frac-

ture function M
p/p
2 (x,Q2, xL, p2

T ) [15], i.e. the structure function of a proton probed under

the condition that the target fragmentation region contains a proton with a given xL and p2
T .

4 Reconstruction of the kinematic variables

In the Q2 range of this analysis, DIS events are characterised by the presence of a scattered

positron, mostly in RCAL. The scattered positron was reconstructed using an electron

finder algorithm based on a neural network [28].

The properties of the hadronic final state in the central detector were derived using

the energy flow objects (EFOs) [29] reconstructed from CAL clusters and CTD tracks by

combining the CTD and CAL information to optimise the resolution of the reconstructed

kinematic variables. The EFOs were additionally corrected for energy loss due to inactive

material in front of the CAL.

The DIS variables x, y, Q2 and W were obtained by using a weighting method [30],

which uses a weighted average of the values determined from the electron [31] and double-

angle [32] methods. The variable y was also reconstructed using the Jacquet-Blondel

method [33], which uses information from the hadronic final state to reconstruct the event

kinematics, and is denoted by yJB.

The momentum p = (pX , pY , pZ) of the leading proton candidate was determined

using the LPS. The variable xL was evaluated as xL = pZ/Ep and the squared transverse

momentum as p2
T = p2

X + p2
Y .

5 Data sample and event selection

During 1997, the ZEUS detector collected an integrated luminosity of 27.8 pb−1. How-

ever, the experimental conditions allowed the LPS to be operated only for an integrated
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luminosity of 12.8 pb−1. Of this sample, 4.8 pb−1 of data were collected with all the LPS

stations. In the remaining part, only the spectrometer s456 was used.

Online, a three-level trigger [34] was used. At the third level, the event variables were

reconstructed with an accuracy close to that obtained offline. Final detector calibration

and full-event reconstruction were performed offline.

Two sets of events were selected [35]: the inclusive DIS sample and the LPS sample.

For a fraction of the inclusive DIS candidate events the trigger was prescaled, thus reducing

the effective integrated luminosity of the inclusive DIS sample to 1 pb−1. The selection of

the LPS sample was performed with a dedicated LPS trigger.

The LPS trigger was implemented at the third level. The algorithm performed a recon-

struction of track segments in each of the detector assemblies inside a pot by geometrically

matching the hits on the planes with same strip orientation and by combining them with

matching hits in the other projections. A ”track quality” was defined for each candidate

which reflected the number of hits contributing to a track segment in a pot. All the geo-

metrical cuts as well as a final cut on the minimum track quality were slightly looser than

the cuts applied in the offline reconstruction. Studies performed on an unbiased sample of

LPS tracks showed a trigger efficiency of 100%.

The presence of a good positron candidate in the CAL was required in the trigger chain

used to select the inclusive DIS sample. In addition, the following conditions were applied:

• |Zvtx| < 50 cm, where Zvtx is the Z coordinate of the event vertex. This cut is needed

to remove background due to proton beam-gas interactions and cosmic rays;

• energy of the scattered positron E′
e > 10 GeV. The positron position was required to

be outside the region close to the rear beampipe hole, where the presence of inactive

material reduced the precision of the energy measurement;

• the quantity E − PZ , where the energy E and the longitudinal momentum PZ are

summed over all the EFOs and the scattered positron, in the range 38 < E − PZ <

65 GeV, to exclude background from photoproduction, proton beam-gas interactions

and cosmic rays;

• yJB > 0.03 in order to ensure hadronic activity away from the forward direction.

The following cuts define the kinematic region:

• Q2 > 3 GeV2, to select DIS events with large virtuality of the exchanged photon;

• 45 < W < 225 GeV, to ensure a wide kinematic coverage of the hadronic system.

The number of events that passed the inclusive DIS selection cuts was 145447.

The LPS sample was subjected to the same selection as the DIS sample. In addition,

the LPS trigger and the following conditions were required:

• a reconstructed track in the LPS with p2
T < 0.5 GeV2 and xL > 0.32. To reduce the

sensitivity of the LPS acceptance to the uncertainties in the location of the beampipe

elements, a cut was applied to the variable ∆pipe, the minimum distance between the

– 6 –
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track and the beampipe anywhere along the beamline. Since the spectrometers s123

and s456 are completely independent (see section 2), different requirements were

applied, ∆pipe > 0.25 cm for s123 and ∆pipe > 0.04 cm for s456, in order to exclude

regions where the Monte Carlo did not reproduce the data.

The selection of tracks with ∆pot > 0.02 cm, where ∆pot is the minimum distance

of the track from the edge of any LPS detector, ensured that the tracks were well

within the active regions of the silicon detectors;

• the sum of the energy and the longitudinal momentum of both the energy deposits

in the CAL and the particle detected in the LPS, E +PZ , was required to be smaller

than 1655 GeV; this cut rejected most of the random overlays of DIS events with

protons from the beam-halo or from a proton beam-gas collision (see section 8).

A total of 73275 events survived the above selection criteria, of which 6008 had a track

in s123 and 67267 had a track in s456.

6 Monte Carlo simulation

To determine the acceptance of the apparatus, inclusive DIS events with Q2 > 0.5 GeV2

were generated with Djangoh [37], which is interfaced to Heracles [38] for electroweak

radiative effects. In order to study the migration of events from low Q2, a sample of photo-

production events with Q2 < 0.5 GeV2 was generated with Pythia [39]. In the MC sam-

ples, the hadronic final state was generated with the Matrix Element Parton Shower model

(MEPS) [40] for QCD radiation and Jetset [41] for hadronisation. The diffractive events

in Djangoh were generated by means of the soft-colour-interaction mechanism (SCI) [14].

All MC events were passed through the standard simulation of the ZEUS detector,

based on Geant 3.13 [42], and of the trigger and through the same reconstruction and

analysis programs as the data. The simulation included the geometry of the beampipe

apertures, the magnetic field along the leading proton trajectory and the proton-beam emit-

tance.

To obtain a good description of the data, it was necessary to reweight the leading

proton xL and p2
T distributions generated by the MC [35, 43]; the fraction of diffractive

events with respect to the total was also reweighted in bins of xL. In particular, the slope

of the exponential p2
T distribution, ranging from 2.5 to 4.5 GeV−2, was increased by a

constant value ∆b = 3.4 GeV−2 and the xL spectrum was reweighted to a flat distribution

below the diffractive peak. The reweighting parameters were chosen according to previous

measurements [7]. The reweighting preserved the total MC cross section.

For the LPS sample, the comparison between the data and the sum of the reweighted

MC samples (Djangoh and Pythia), for the DIS variables and the LPS specific vari-

ables, is shown in figures 2 and 3. The reweighted MC describes the data of the single

spectrometers within the systematic uncertainties (see section 9), and the combined plots

are shown. The LPS variable ∆pipe is not perfectly reproduced by the reweighted MC, but

the selection cut applied is far from the region in which the disagreement is observed.
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Figure 2. Comparison between data (dots) and reweighted MC (shaded histograms) for DIS

quantities for the LPS sample: (a) Z coordinate of the vertex, (b) E − PZ distribution, (c) energy

of the scattered positron, E′

e, (d) polar angle of the scattered positron, θe, (e) virtuality of the

exchanged photon, Q2, (f) invariant mass of the hadronic system, W , and (g) Bjorken scaling

variable, x.

7 Acceptance

The acceptance was defined as the ratio of the number of reconstructed events in a bin

to the number of generated events in that bin. This definition includes the effects of

the geometrical acceptance of the apparatus, its efficiency and resolution, and the event

selection efficiency. Figure 4 shows the acceptances of the LPS station combinations s123

and s456 as a function of xL and p2
T . The maximum acceptance is 10% in the region
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Figure 3. Comparison between data (dots) and reweighted MC (shaded histograms) for LPS

specific quantities: (a) fractional longitudinal momentum, xL, (b) squared transverse momentum,

p2
T , (c) minimum track distance from the edge of the pot, ∆pot, and (d) minimum track distance

from the beampipe, ∆pipe.

0.63 < xL < 0.65, 0.05 < p2
T < 0.1 GeV2 for the spectrometer s123 and 52% in the region

0.77 < xL < 0.8, p2
T < 0.05 GeV2 for the spectrometer s456.

The analysis bins were chosen according to the LPS acceptance, resolution (see sec-

tion 2) and available statistics.

For completeness, also shown in figure 4 are the three regions of p2
T used for the cross-

section measurements.
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Figure 4. Acceptance of the LPS spectrometers (a) s123 and (b) s456 in the xL, p2
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dashed lines delimit the three p2
T integration ranges.
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Figure 5. (a) Ratio ρFNC of the number of events with a track in the LPS and a neutron

candidate in the FNC to the number of events with a track in the LPS. The dots represent the data

and the shaded histogram the reweighted MC; (b) expected fraction R of positive pions and kaons

reconstructed in the LPS as a function of xL. The error band reflects the statistical uncertainty

derived from the LPS-FNC data sample.

8 Background studies

The LPS data sample contains three background contributions,

• non-baryon contributions;

• overlay events;

• misidentified low-Q2 background.
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The LPS had no particle identification capability, but MC studies indicate that most

high-xL particles in the LPS are protons. The MC expectations were tested with a sub-

sample of LPS-tagged events where a neutron candidate was found in the FNC [36]. The

neutron candidate was required to have a minimum energy deposit of 50 GeV and the total

E + PZ of the event, including the neutron, was required to be below 1750 GeV. A total

of 47 events were found. For this class of events the track in the LPS is most likely either

a π+ or a K+. Figure 5a shows the ratio ρFNC of the number of events with a track in

the LPS and a neutron candidate in the FNC to the number of events with a track in the

LPS. The reweighted MC describes the data well and therefore can be used to subtract

the background. The fraction R of events with a positive meson reconstructed in the LPS,

evaluated with the reweighted MC, is shown in figure 5b as a function of xL. The fraction

R in the MC was found to be independent of p2
T . It is substantial at low xL and falls below

10% above xL ≈ 0.6. This contribution was subtracted.

The E + PZ spectrum for the beam-halo events was constructed as a combination of

generic DIS events and a beam-halo track reconstructed in the LPS in randomly triggered

events. The E +PZ distribution was normalised to the data for E +PZ > 1685 GeV, which

mainly contain beam-halo events. The background remaining after the E+PZ < 1655 GeV

cut was negligible for xL < 0.9, and reached (8± 3)% for xL > 0.98. The expected fraction

of overlay events was subtracted.

The acceptance corrections were calculated by means of the reweighted MC generated

with Q2 > 2 GeV2. The contribution of events which migrate from the region Q2 < 2 GeV2

was found to be independent of xL and p2
T and equal to (7.3 ± 0.5)%; it was subtracted.

9 Systematic studies

The systematic uncertainties were calculated by varying the cuts and by modifying the anal-

ysis procedure. The stability of the DIS selection was checked by varying the selection cuts,

• the |Zvtx| cut was varied by ±10 cm;

• the cut on the scattered positron energy was varied by ± 2 GeV and the width of the

fiducial region in the rear calorimeter was varied by 0.5 cm in the X and Y directions;

• the E − PZ cut was changed to 35 < E − PZ < 68 GeV and 41 < E − PZ < 62 GeV;

• the yJB cut was raised to 0.04.

The observed changes in the cross section were below 1% and neglected. The variation

in the LPS selection of the ∆pipe threshold by ± 0.03 cm and the ∆pot threshold by ± 0.01

led to negligible changes in the cross section (< 1%).

The following checks resulted in non-negligible systematic uncertainties of the cross

section (the mean value is given in brackets):

• the reweighting parameter ∆b was varied by ±0.9 GeV−2, compatible with the spread

of b versus xL (+6.8%
−5.9%);
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• the subtracted fraction of background from π+ and K+ reconstructed in the LPS was

varied by the statistical uncertainty derived from the LPS-FNC data (see figure 5)

(+1.7%
−1.7% for xL < 0.7);

• the fraction of overlay events to be subtracted from the data was increased and

decreased by its statistical uncertainty (+2.0%
−2.0%

for xL > 0.9);

• the uncertainty on the beam optics was evaluated by varying the transverse momen-

tum spread of the proton beam in the MC by ±10% [17] and led to a change of

typically ±1.4%. In addition, the positions of the LPS stations were varied to reflect

the actual position of the stations during the data-taking period. This was done

because, in the simulation, the MC assumes only one average position (+2.5%
−1.8%). In

the diffractive region the uncertainty related to the beam optics increased to ±10%.

The resulting total systematic uncertainty, obtained by adding in quadrature all the

individual systematic uncertainties (combining positive and negative contributions sepa-

rately), excluding an overall normalisation uncertainty of 2% from the luminosity measure-

ment, is shown in the figures as an error band, that includes both a correlated and an

uncorrelated component.

10 Results

All measurements were performed separately with the s123 and s456 spectrometers, and

were then combined in a weighted average, using only statistical uncertainties. This pro-

cedure was repeated for every systematic check. Some measurements are presented as

normalised to the inclusive DIS cross section, σinc, determined from the inclusive DIS sam-

ple described in section 5. All cross-section measurements are averaged over a given bin

and quoted at the mean value of the variable in that bin. The measurements for xL > 0.93

are presented here in a different kinematic domain than those previously published [17].

10.1 Transverse-momentum spectra and p2
T slopes

xL range p2
T range d2σLP/dxLdp2

T d2σLP/dxLdp2
T d2σLP/dxLdp2

T

(GeV2) s123 (nb/GeV2) s456 (nb/GeV2) Combined (nb/GeV2)

0.32–0.38 0.00–0.05 467 ± 40+49
−53 467 ± 40+49

−53

0.05–0.10 387 ± 68+45
−161 387 ± 68+45

−161

0.38–0.44 0.00–0.05 367 ± 28+32
−22 502 ± 41+42

−83 409 ± 23+28
−31

0.05–0.10 349 ± 46+35
−57 349 ± 46+35

−57

0.44–0.50 0.00–0.05 362 ± 25+18
−40 469 ± 25+46

−49 415 ± 18+20
−36

0.05–0.10 332 ± 40+19
−38 332 ± 40+19

−38

0.10–0.15 165 ± 44+22
−51 165 ± 44+22

−51

0.50–0.56 0.00–0.05 403 ± 26+21
−26 463 ± 22+128

−14 437 ± 17+44
−12

0.05–0.10 317 ± 33+51
−17 298 ± 19+52

−16 303 ± 17+41
−12
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table 1 (cont.)

xL range p2
T range d2σLP/dxLdp2

T d2σLP/dxLdp2
T d2σLP/dxLdp2

T

(GeV2) s123 (nb/GeV2) s456 (nb/GeV2) Combined (nb/GeV2)

0.10–0.15 219 ± 47+40
−13 219 ± 47+40

−13

0.56–0.62 0.00–0.05 460 ± 33+22
−70 463 ± 19+30

−26 462 ± 16+20
−31

0.05–0.10 303 ± 27+29
−25 306 ± 16+16

−30 305 ± 13+16
−23

0.10–0.15 178 ± 35+42
−14 210 ± 17+8

−46 204 ± 15+7
−36

0.15–0.20 136 ± 22+40
−11 136 ± 22+40

−11

0.62–0.65 0.00–0.05 410 ± 53+28
−56 463 ± 20+19

−17 456 ± 19+17
−19

0.05–0.10 296 ± 29+18
−12 324 ± 31+16

−51 309 ± 21+12
−22

0.10–0.15 189 ± 43+19
−51 187 ± 16+13

−16 187 ± 15+12
−18

0.15–0.20 148 ± 17+8
−27 148 ± 17+8

−27

0.20–0.25 134 ± 22+8
−42 134 ± 22+8

−42

0.65–0.68 0.00–0.05 421 ± 74+64
−71 464 ± 16+27

−16 462 ± 16+27
−17

0.05–0.10 320 ± 29+17
−43 297 ± 33+24

−66 310 ± 22+15
−52

0.10–0.15 181 ± 36+81
−19 298 ± 37+20

−131 238 ± 26+11
−28

0.15–0.20 118 ± 13+42
−6 118 ± 13+42

−6

0.20–0.25 119 ± 16+18
−6 119 ± 16+18

−6

0.25–0.35 87 ± 12+7
−15 87 ± 12+7

−15

Table 1. The double-differential cross-section d2σLP/dxLdp2
T as a function of xL and p2

T , separately

measured with the spectrometers s123 and s456 and the combined result. Statistical uncertainties

are listed first, followed by systematic uncertainties.

table 1 (cont.)

xL range p2
T range d2σLP/dxLdp2

T d2σLP/dxLdp2
T d2σLP/dxLdp2

T

(GeV2) s123 (nb/GeV2) s456 (nb/GeV2) Combined (nb/GeV2)

0.68–0.71 0.00–0.05 253 ± 85+27
−134 500 ± 15+17

−17 493 ± 15+16
−28

0.05–0.10 320 ± 29+22
−42 366 ± 41+24

−138 335 ± 24+17
−74

0.10–0.15 184 ± 31+57
−17 259 ± 47+39

−55 207 ± 26+47
−15

0.15–0.20 92 ± 41+40
−74 155 ± 24+40

−11 139 ± 21+33
−45

0.20–0.25 103 ± 16+32
−7 103 ± 16+32

−7

0.25–0.35 85 ± 10+6
−4 85 ± 10+6

−4

0.35–0.50 44 ± 9+4
−9 44 ± 9+4

−9

0.71–0.74 0.00–0.05 472 ± 12+28
−13 472 ± 12+28

−13

0.05–0.10 279 ± 27+59
−16 255 ± 24+51

−42 266 ± 18+49
−24

0.10–0.15 217 ± 33+24
−38 130 ± 33+85

−16 173 ± 23+52
−15

0.15–0.20 114 ± 43+34
−58 250 ± 66+51

−133 154 ± 36+25
−69

0.20–0.25 116 ± 27+55
−15 62 ± 19+55

−15

0.25–0.35 86 ± 16+11
−25 86 ± 16+11

−25

0.35–0.50 27 ± 5+2
−2 27 ± 5+2

−2
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table 1 (cont.)

xL range p2
T range d2σLP/dxLdp2

T d2σLP/dxLdp2
T d2σLP/dxLdp2

T

(GeV2) s123 (nb/GeV2) s456 (nb/GeV2) Combined (nb/GeV2)

0.74–0.77 0.00–0.05 467 ± 10+9
−28 467 ± 10+9

−28

0.05–0.10 250 ± 30+51
−32 325 ± 21+42

−14 300 ± 17+42
−15

0.10–0.15 234 ± 30+53
−6 199 ± 40+33

−19 222 ± 24+40
−7

0.15–0.20 108 ± 35+38
−31 108 ± 35+38

−31

0.20–0.25 152 ± 52+18
−84 152 ± 52+18

−84

0.25–0.35 121 ± 34+9
−80 121 ± 34+9

−80

0.35–0.50 8 ± 4+11
−1 8 ± 4+11

−1

0.77–0.80 0.00–0.05 452 ± 10+10
−17 452 ± 10+10

−17

0.05–0.10 248 ± 39+30
−27 297 ± 14+13

−38 292 ± 13+13
−35

0.10–0.15 196 ± 23+97
−7 241 ± 20+50

−9 222 ± 15+62
−5

0.15–0.20 198 ± 48+40
−39 203 ± 32+97

−9 201 ± 27+56
−13

0.20–0.25 168 ± 54+58
−46 168 ± 54+58

−46

0.80–0.83 0.00–0.05 451 ± 10+9
−19 451 ± 10+9

−19

0.05–0.10 353 ± 74+16
−117 266 ± 11+18

−8 268 ± 11+18
−9

0.10–0.15 197 ± 25+33
−14 210 ± 14+7

−16 207 ± 12+5
−13

0.15–0.20 84 ± 23+25
−13 178 ± 17+5

−75 147 ± 14+9
−33

0.20–0.25 73 ± 32+68
−52 136 ± 16+9

−33 123 ± 15+22
−45

0.25–0.35 98 ± 14+22
−7 98 ± 14+22

−7

0.83–0.86 0.00–0.05 434 ± 10+13
−19 434 ± 10+13

−19

0.05–0.10 295 ± 12+8
−33 295 ± 12+8

−33

0.10–0.15 184 ± 24+79
−10 207 ± 13+20

−13 202 ± 11+17
−5

0.15–0.20 190 ± 37+33
−59 169 ± 15+5

−39 172 ± 14+5
−39

0.20–0.25 50 ± 20+22
−21 127 ± 14+33

−7 102 ± 11+30
−19

0.25–0.35 122 ± 14+7
−36 122 ± 14+7

−36

0.35–0.50 49 ± 8+12
−6 49 ± 8+12

−6

0.86–0.89 0.00–0.05 467 ± 13+24
−18 467 ± 13+24

−18

0.05–0.10 309 ± 12+22
−20 309 ± 12+22

−20

0.10–0.15 247 ± 36+44
−29 232 ± 14+8

−20 234 ± 13+7
−19

0.15–0.20 196 ± 32+23
−43 180 ± 15+6

−35 183 ± 14+6
−36

0.20–0.25 115 ± 34+55
−24 136 ± 14+21

−16 133 ± 13+20
−16

0.25–0.35 24 ± 16+8
−4 81 ± 8+15

−11 69 ± 7+24
−6

0.35–0.50 43 ± 6+8
−5 43 ± 6+8

−5

0.89–0.92 0.00–0.05 481 ± 19+24
−19 481 ± 19+24

−19

0.05–0.10 315 ± 13+16
−10 315 ± 13+16

−10

0.10–0.15 262 ± 47+68
−78 228 ± 14+18

−21 231 ± 13+15
−24

0.15–0.20 172 ± 27+28
−44 175 ± 14+22

−10 174 ± 12+14
−11

0.20–0.25 97 ± 27+58
−18 133 ± 13+18

−19 126 ± 12+15
−11

0.25–0.35 37 ± 19+18
−11 69 ± 7+7

−5 65 ± 6+6
−5
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table 1 (cont.)

xL range p2
T range d2σLP/dxLdp2

T d2σLP/dxLdp2
T d2σLP/dxLdp2

T

(GeV2) s123 (nb/GeV2) s456 (nb/GeV2) Combined (nb/GeV2)

0.35–0.50 39 ± 5+6
−5 39 ± 5+6

−5

0.92–0.95 0.00–0.05 820 ± 145+124
−432 820 ± 145+124

−432

0.05–0.10 235 ± 14+54
−8 235 ± 14+54

−8

0.10–0.15 221 ± 58+212
−36 182 ± 14+48

−22 184 ± 13+45
−21

0.15–0.20 138 ± 21+47
−11 156 ± 14+33

−13 150 ± 12+30
−9

0.20–0.25 92 ± 22+38
−10 114 ± 13+17

−20 109 ± 11+15
−11

0.25–0.35 39 ± 15+9
−18 83 ± 9+16

−12 72 ± 8+6
−13

0.35–0.50 36 ± 5+16
−4 36 ± 5+16

−4

0.95–0.98 0.05–0.10 423 ± 35+63
−116 423 ± 35+63

−116

0.10–0.15 328 ± 30+84
−10 328 ± 30+84

−10

0.15–0.20 280 ± 39+57
−16 250 ± 32+142

−5 262 ± 25+90
−1

0.20–0.25 254 ± 46+5
−116 197 ± 32+60

−6 215 ± 26+30
−26

0.25–0.35 50 ± 17+18
−30 190 ± 34+60

−72 77 ± 15+19
−44

0.98–1.00 0.05–0.10 2788 ± 180+466
−304 2788 ± 180+466

−304

0.10–0.15 1423 ± 90+188
−131 1423 ± 90+188

−131

0.15–0.20 1218 ± 160+182
−214 1012 ± 89+132

−133 1061 ± 78+85
−118

0.20–0.25 574 ± 81+166
−35 848 ± 93+186

−41 693 ± 61+174
−16

0.25–0.35 231 ± 54+116
−13 588 ± 69+39

−93 367 ± 42+147
−26
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xL range b (GeV−2)

0.50–0.56 6.98+1.11
−1.06

+2.99
−1.53

0.56–0.62 8.49+0.47
−0.51

+2.18
−1.32

0.62–0.65 7.36+0.34
−0.38

+1.12
−0.54

0.65–0.68 6.83+0.26
−0.26

+0.78
−0.38

0.68–0.71 7.01+0.21
−0.21

+0.15
−0.51

0.71–0.74 7.43+0.26
−0.26

+0.63
−0.38

0.74–0.77 7.48+0.38
−0.38

+1.23
−1.00

0.77–0.80 6.82+0.30
−0.34

+0.90
−1.24

0.80–0.83 6.54+0.21
−0.21

+0.52
−0.40

0.83–0.86 5.88+0.17
−0.17

+0.75
−0.18

0.86–0.89 6.82+0.17
−0.17

+0.82
−0.64

0.89–0.92 7.22+0.21
−0.21

+0.72
−0.75

0.92–0.95 6.00+0.26
−0.26

+0.48
−1.37

0.95–0.98 4.45+0.47
−0.47

+1.69
−0.88

0.98–1.00 8.31+0.34
−0.38

+1.05
−0.91

Table 2. The p2
T -slope, b, of the cross-section d2σLP/dxLdp2

T , as defined by the parameterisation

A · e−b·p2

T and obtained from a fit to the data in bins of xL. Statistical uncertainties are listed first,

followed by systematic uncertainties.

The double-differential cross-section d2σLP/dxLdp2
T as a function of p2

T in bins of xL

is presented in figure 6 and given in table 1. The results obtained with the s123 and

s456 spectrometers are shown separately. Within the uncorrelated uncertainties, the two

samples lead to consistent results. The lines shown in figure 6 represent the results of a

fit of an exponential function A · e−bp2
T to the combined cross-section d2σLP/dxLdp2

T . The

band shows the statistical uncertainty of the fit. The slopes are presented as a function of

xL in figure 7 and given in table 2. The slopes show no strong dependence on xL. The

mean value of the slopes is 〈b〉 = 6.76±0.07(stat.)+0.63
−0.52(syst.)GeV−2. The measurements of

the p2
T slopes at 〈Q2〉 = 5.1 GeV2 and 〈Q2〉 = 30.1 GeV2, in the range 45 < W < 225 GeV,

where xL bins were combined, are presented in figure 8 and given in table 3. Also shown

are the ZEUS 1994 data [16] in the range Q2 < 0.02 GeV2 and 176 < W < 225 GeV and

the ZEUS 1995 [7] data in the range 0.1 < Q2 < 0.74 GeV2 and 85 < W < 258 GeV. The

p2
T slopes are independent of the virtuality of the exchanged photon.

10.2 Longitudinal momentum spectra

The cross section as a function of xL has been measured in three bins of p2
T : 0 < p2

T < 0.04,

0.04 < p2
T < 0.15 and 0.15 < p2

T < 0.5 GeV2. The leading proton production rate,

1/σinc · dσLP/dxL, for the three p2
T ranges is shown in figure 9 and listed in table 4. Due

to the LPS acceptance, the accessible xL range changes as a function of p2
T , as seen in the

figure. The rate as a function of xL is approximately flat up to the diffractive peak, where

it increases by a factor of about six. This behaviour of the cross section as a function of
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ZEUS

10

10 2

10 3 0.32<xL<0.38

d2 σ L
P
/d

x L
dp

T2
 (

nb
/G

eV
2 ) 0.38<xL<0.44 0.44<xL<0.5 0.5<xL<0.56

10

10 2

10 3 0.56<xL<0.62 0.62<xL<0.65 0.65<xL<0.68 0.68<xL<0.71

10

10 2

10 3 0.71<xL<0.74 0.74<xL<0.77 0.77<xL<0.8 0.8<xL<0.83

10

10 2

10 3 0.83<xL<0.86 0.86<xL<0.89

0 0.2 0.4

0.89<xL<0.92

0 0.2 0.4

0.92<xL<0.95

10

10 2

10 3

0 0.2 0.4

0.95<xL<0.98

10 2

10 3

0 0.2 0.4

0.98<xL<1

pT
2 (GeV2)

ZEUS LPS s123 4.8 pb-1

ZEUS LPS s456 12.8 pb-1

Q2>3 GeV2, 45<W<225 GeV

Fit A⋅e(-b⋅pT
2)

Figure 6. The double-differential cross-section d2σLP/dxLdp2
T for Q2 > 3 GeV 2 and 45 < W <

225GeV as a function of p2
T in bins of xL. The circles and the dots are the ZEUS data measured

with the spectrometers s123 and s456, respectively. For clarity, only the statistical uncertainties

are shown. The systematic uncertainties are listed in table 1. The lines are the result of a fit to a

function A · e−b·p2

T , as described in the text. The solid lines indicate the range in which the fit was

performed. The bands show the statistical uncertainty of the fit.
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ZEUS

0

2

4

6

8

10

0.5 0.6 0.7 0.8 0.9 1
xL

b 
(G

eV
-2

)

ZEUS  12.8 pb-1

Q2>3 GeV2

45<W<225 GeV

pT
2<0.5 GeV2

Figure 7. The p2
T -slope, b, of the cross-section d2σLP/dxLdp2

T , as defined by the parameterisation

A · e−b·p2

T and obtained from a fit to the data in bins of xL, in the kinematic range indicated in the

figure. The bands represent the systematic uncertainty.

xL is essentially independent of p2
T .

Since, as discussed in the previous section, also the p2
T slopes are independent of xL, the

cross section as a function of xL can be extrapolated to the full xL > 0.32 and p2
T < 0.5 GeV2

range. The measurement of 1/σinc · dσLP/dxL as a function of xL, extrapolated to the full

p2
T < 0.5 GeV2 range is shown in figure 10 and given in table 5. For comparison, the ZEUS

1995 data [7] with lower Q2 are also shown. The two measurements are consistent.

For p2
T < 0.04 GeV2, the measurement of 1/σinc · dσLP/dxL can also be compared

to previous measurements in the photoproduction regime (Q2 < 0.02 GeV2) [7]. The

comparison is shown in figure 11. Due to the low p2
T values, the diffractive peak is not

accessible (see figure 4). The photoproduction data tend to lie systematically below the
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ZEUS  12.8 pb-1,< Q2>=5.1 GeV2, 45<W<225 GeV

ZEUS  12.8 pb-1, <Q2>=30.6 GeV2, 45<W<225 GeV

ZEUS 1995, 0.1<Q2<0.74 GeV2, 85<W<258 GeV

ZEUS 1994, Q2<0.02 GeV2, 176<W<225 GeV







pT
2<0.5 GeV2

Figure 8. The p2
T -slope, b, of the cross-section d2σLP/dxLdp2

T , as defined by the parameterisation

A·e−b·p2

T and obtained from a fit to the data in bins of xL, in different kinematic ranges as indicated

in the figure. The bands represent the systematic uncertainty (light band for lower Q2 data and

dark band for higher Q2 data). For the ZEUS 1995 data [7] and the ZEUS 1994 data [16], the inner

vertical bars represent the statistical uncertainties, the outer bars the statistical and systematic

uncertainties added in quadrature.

higher-Q2 measurement, though within uncertainties the results are consistent.

10.3 Ratios of leading proton production to inclusive DIS yields

The rate of leading proton production, rLP(3)(x,Q2, xL), in e+p scattering was determined

according to

rLP(3)(x,Q2, xL) =
NLPS(x,Q2, xL)

NDIS(x,Q2)

ADIS

ALPS

LDIS

LLPS

1

∆xL
, (10.1)
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xL range b (GeV−2)

〈Q2〉 = 5.1 GeV2 〈Q2〉 = 30.6 GeV2

0.5–0.65 6.90+0.38
−0.43

+1.34
−0.18 7.97+0.43

−0.38
+1.06
−0.39

0.65–0.8 7.00+0.17
−0.17

+0.20
−0.21 7.13+0.17

−0.17
+0.16
−0.31

0.8–0.92 7.29+0.13
−0.17

+0.15
−0.49 6.10+0.13

−0.13
+0.64
−0.04

0.92–1.0 6.74+0.26
−0.30

+0.28
−0.33 6.06+0.30

−0.30
+0.66
−0.36

Table 3. The p2
T -slope, b, of the cross-section d2σLP/dxLdp2

T , as defined by the parameterisation

A·e−b·p2

T and obtained from a fit to the data in bins of xL, measured in two ranges of Q2. Statistical

uncertainties are listed first, followed by systematic uncertainties.

xL range 1/σinc · dσLP/dxL

0 < p2
T < 0.04 GeV2 0.04 < p2

T < 0.15 GeV2 0.15 < p2
T < 0.5 GeV2

0.32–0.38 0.091 ± 0.008+0.009
−0.013

0.38–0.44 0.082 ± 0.004+0.005
−0.008 0.156 ± 0.016+0.013

−0.024

0.44–0.50 0.086 ± 0.004+0.003
−0.010 0.144 ± 0.013+0.005

−0.021

0.50–0.56 0.091 ± 0.004+0.004
−0.006 0.140 ± 0.006+0.026

−0.008

0.56–0.62 0.097 ± 0.004+0.002
−0.010 0.143 ± 0.004+0.004

−0.014

0.62–0.68 0.096 ± 0.003+0.003
−0.005 0.142 ± 0.005+0.002

−0.021 0.126 ± 0.007+0.010
−0.011

0.68–0.74 0.100 ± 0.002+0.003
−0.005 0.141 ± 0.005+0.004

−0.012 0.138 ± 0.008+0.008
−0.009

0.74–0.80 0.094 ± 0.001+0.000
−0.007 0.145 ± 0.003+0.003

−0.006 0.155 ± 0.015+0.010
−0.015

0.80–0.86 0.091 ± 0.001+0.001
−0.005 0.139 ± 0.003+0.001

−0.008 0.146 ± 0.005+0.010
−0.023

0.86–0.92 0.099 ± 0.002+0.002
−0.007 0.154 ± 0.003+0.005

−0.007 0.143 ± 0.004+0.011
−0.014

0.92–0.98 0.167 ± 0.006+0.020
−0.015 0.179 ± 0.007+0.021

−0.013

0.97–1.00 1.126 ± 0.047+0.113
−0.092 0.816 ± 0.036+0.088

−0.055

Table 4. The leading proton production rate, 1/σinc · dσLP/dxL, as a function of xL measured in

three ranges of p2
T . Statistical uncertainties are listed first, followed by systematic uncertainties.

where NLPS(x,Q2, xL) is the number of events corresponding to an integrated luminosity,

LLPS, with a proton candidate in the LPS in a given (x,Q2, xL) bin and integrated over

0 < p2
T < 0.5 GeV2, and NDIS(x,Q2) is the number of DIS events corresponding to an

integrated luminosity, LDIS, in that (x,Q2) bin. The acceptance ADIS was estimated by

applying only the DIS selection cuts and ALPS is the acceptance of the LPS sample. The

variable ∆xL is the size of the xL bin.

The ratio rLP(3) as a function of xL in bins of x and Q2 is shown in figure 12 and given

in table 6. The xL range of the measurement is limited to 0.32 < xL < 0.92, as detailed

studies of the diffraction region were presented elsewhere [17]. The ratio rLP(3) has also

been measured in the three ranges of p2
T and the values are given in tables 7, 8 and 9.

The rLP(3) values are approximately constant over the kinematic range of this analysis,

independent of the p2
T range.
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Figure 9. The leading proton production rate, 1/σinc · dσLP/dxL, as a function of xL in three

p2
T ranges as indicated in the figure. The measurements in the higher p2

T range are multiplied by a

factor two for visibility. The bands represent the systematic uncertainty.
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Figure 10. The leading proton production rate, 1/σinc · dσLP/dxL, for two ranges of Q2 as

indicated in the figure. The bands represent the systematic uncertainty. For the ZEUS 1995

data [7] the inner vertical bars represent the statistical uncertainties, the outer bars the statistical

and systematic uncertainties added in quadrature.
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xL range 1/σinc · dσLP/dxL

0.32–0.38 0.372 ± 0.026+0.046
−0.062

0.38–0.44 0.309 ± 0.018+0.037
−0.037

0.44–0.50 0.339 ± 0.012+0.033
−0.044

0.50–0.56 0.358 ± 0.010+0.047
−0.030

0.56–0.62 0.371 ± 0.009+0.029
−0.039

0.62–0.65 0.371 ± 0.011+0.025
−0.037

0.65–0.68 0.385 ± 0.010+0.027
−0.031

0.68–0.71 0.418 ± 0.010+0.030
−0.037

0.71–0.74 0.398 ± 0.009+0.039
−0.036

0.74–0.77 0.408 ± 0.008+0.038
−0.039

0.77–0.80 0.398 ± 0.007+0.036
−0.037

0.80–0.83 0.376 ± 0.006+0.029
−0.035

0.83–0.86 0.382 ± 0.006+0.026
−0.033

0.86–0.89 0.405 ± 0.007+0.024
−0.030

0.89–0.92 0.395 ± 0.008+0.019
−0.026

0.92–0.95 0.325 ± 0.010+0.044
−0.016

0.95–0.98 0.562 ± 0.023+0.058
−0.049

0.98–1.00 2.478 ± 0.076+0.235
−0.136

Table 5. The leading proton production rate, 1/σinc·dσLP/dxL, as a function of xL measured in the

region p2
T < 0.5 GeV 2. Statistical uncertainties are listed first, followed by systematic uncertainties.
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Figure 11. The leading proton production rate, 1/σinc · dσLP/dxL, for p2
T < 0.04 GeV 2 in the

kinematic ranges indicated in the figure. Other details as in figure 8.
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Figure 12. The leading proton production rate, rLP(3), as a function of xL in bins of x and Q2,
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T < 0.5 GeV 2. The bands represent the systematic uncertainty.
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〈x〉 〈Q2〉 (GeV2) xL range rLP(3)

9.6 · 10−5 4.2 0.32–0.42 0.365 ± 0.086+0.066
−0.168

0.42–0.52 0.268 ± 0.040+0.085
−0.041

0.52–0.62 0.391 ± 0.041+0.050
−0.048

0.62–0.72 0.338 ± 0.026+0.058
−0.025

0.72–0.72 0.378 ± 0.024+0.050
−0.049

0.82–0.72 0.458 ± 0.027+0.032
−0.076

1.7 · 10−4 4.2 0.32–0.42 0.414 ± 0.063+0.050
−0.135

0.42–0.52 0.310 ± 0.032+0.039
−0.029

0.52–0.62 0.370 ± 0.026+0.037
−0.036

0.62–0.72 0.366 ± 0.019+0.028
−0.035

0.72–0.82 0.390 ± 0.015+0.039
−0.034

0.82–0.92 0.378 ± 0.014+0.026
−0.036

3.5 · 10−4 4.2 0.32–0.42 0.351 ± 0.061+0.047
−0.062

0.42–0.52 0.269 ± 0.029+0.055
−0.028

0.52–0.62 0.354 ± 0.025+0.067
−0.029

0.62–0.72 0.406 ± 0.022+0.030
−0.063

0.72–0.82 0.405 ± 0.017+0.040
−0.038

0.82–0.92 0.364 ± 0.014+0.023
−0.029

6.9 · 10−4 4.2 0.32–0.42 0.275 ± 0.057+0.063
−0.047

0.42–0.52 0.308 ± 0.035+0.038
−0.031

0.52–0.62 0.339 ± 0.027+0.045
−0.034

0.62–0.72 0.326 ± 0.020+0.026
−0.027

0.72–0.82 0.400 ± 0.018+0.063
−0.031

0.82–0.92 0.403 ± 0.017+0.030
−0.070

1.46 · 10−3 4.2 0.32–0.42 0.272 ± 0.083+0.040
−0.082

0.42–0.52 0.268 ± 0.045+0.066
−0.035

0.52–0.62 0.285 ± 0.038+0.047
−0.039

0.62–0.72 0.355 ± 0.029+0.041
−0.023

0.72–0.82 0.362 ± 0.022+0.057
−0.046

0.82–0.92 0.359 ± 0.021+0.025
−0.034

Table 6. The leading proton production rate, rLP(3), measured as a function of xL for protons

with p2
T < 0.5 GeV 2, in bins of x and Q2, with averages 〈x〉 and 〈Q2〉. Statistical uncertainties are

listed first, followed by systematic uncertainties.

table 6 (cont.)

〈x〉 〈Q2〉 (GeV2) xL range rLP(3)

1.9 · 10−4 7.3 0.32–0.42 0.314 ± 0.084+0.087
−0.055

0.42–0.52 0.430 ± 0.061+0.065
−0.122

0.52–0.62 0.299 ± 0.031+0.049
−0.027

0.62–0.72 0.355 ± 0.027+0.041
−0.029
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table 6 (cont.)

〈x〉 〈Q2〉 (GeV2) xL range rLP(3)

0.72–0.82 0.382 ± 0.024+0.039
−0.042

0.82–0.92 0.383 ± 0.022+0.028
−0.083

3.4 · 10−4 7.3 0.32–0.42 0.340 ± 0.076+0.062
−0.075

0.42–0.52 0.360 ± 0.044+0.040
−0.062

0.52–0.62 0.369 ± 0.032+0.044
−0.029

0.62–0.72 0.347 ± 0.022+0.030
−0.038

0.72–0.82 0.374 ± 0.019+0.037
−0.033

0.82–0.92 0.359 ± 0.016+0.037
−0.020

6.9 · 10−4 7.3 0.32–0.42 0.392 ± 0.081+0.056
−0.102

0.42–0.52 0.261 ± 0.038+0.029
−0.086

0.52–0.62 0.372 ± 0.034+0.048
−0.028

0.62–0.72 0.363 ± 0.025+0.028
−0.047

0.72–0.82 0.385 ± 0.020+0.034
−0.040

0.82–0.92 0.388 ± 0.019+0.027
−0.037

1.36 · 10−3 7.3 0.32–0.42 0.275 ± 0.062+0.106
−0.061

0.42–0.52 0.401 ± 0.056+0.050
−0.088

0.52–0.62 0.393 ± 0.039+0.043
−0.035

0.62–0.72 0.448 ± 0.032+0.042
−0.057

0.72–0.82 0.394 ± 0.021+0.042
−0.043

0.82–0.92 0.389 ± 0.020+0.033
−0.025

2.67 · 10−3 7.3 0.32–0.47 0.290 ± 0.097+0.034
−0.112

0.47–0.62 0.442 ± 0.086+0.092
−0.159

0.62–0.77 0.449 ± 0.050+0.094
−0.046

0.77–0.92 0.398 ± 0.033+0.049
−0.054

2.6 · 10−4 11 0.32–0.47 0.349 ± 0.078+0.042
−0.128

0.47–0.62 0.285 ± 0.034+0.111
−0.023

0.62–0.77 0.485 ± 0.037+0.041
−0.074

0.77–0.92 0.371 ± 0.021+0.033
−0.024

4.6 · 10−4 11 0.32–0.42 0.482 ± 0.097+0.067
−0.162

0.42–0.52 0.285 ± 0.036+0.037
−0.039

0.52–0.62 0.370 ± 0.031+0.064
−0.033

0.62–0.72 0.435 ± 0.028+0.034
−0.054

0.72–0.82 0.386 ± 0.019+0.051
−0.030

0.82–0.92 0.365 ± 0.016+0.049
−0.018

9.2 · 10−4 11 0.32–0.42 0.418 ± 0.084+0.056
−0.093

0.42–0.52 0.286 ± 0.037+0.064
−0.028

0.52–0.62 0.408 ± 0.034+0.041
−0.035

0.62–0.72 0.392 ± 0.024+0.052
−0.027
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table 6 (cont.)

〈x〉 〈Q2〉 (GeV2) xL range rLP(3)

0.72–0.82 0.392 ± 0.019+0.039
−0.056

0.82–0.92 0.397 ± 0.018+0.024
−0.044

1.83 · 10−3 11 0.32–0.42 0.361 ± 0.075+0.058
−0.056

0.42–0.52 0.353 ± 0.047+0.039
−0.077

0.52–0.62 0.375 ± 0.033+0.036
−0.073

0.62–0.72 0.411 ± 0.026+0.030
−0.027

0.72–0.82 0.348 ± 0.017+0.043
−0.026

0.82–0.92 0.378 ± 0.017+0.051
−0.021

3.98 · 10−3 11 0.32–0.47 0.228 ± 0.063+0.033
−0.090

0.47–0.62 0.378 ± 0.047+0.043
−0.063

0.62–0.77 0.421 ± 0.033+0.034
−0.105

0.77–0.92 0.448 ± 0.026+0.038
−0.057

5.1 · 10−4 22 0.32–0.47 0.470 ± 0.111+0.061
−0.281

0.47–0.62 0.306 ± 0.037+0.045
−0.028

0.62–0.77 0.436 ± 0.035+0.044
−0.043

0.77–0.92 0.388 ± 0.023+0.042
−0.027

9.2 · 10−4 22 0.32–0.42 0.356 ± 0.084+0.137
−0.071

0.42–0.52 0.350 ± 0.053+0.044
−0.044

0.52–0.62 0.376 ± 0.039+0.058
−0.030

0.62–0.72 0.401 ± 0.030+0.031
−0.057

0.72–0.82 0.386 ± 0.022+0.056
−0.029

0.82–0.92 0.411 ± 0.022+0.026
−0.041

1.84 · 10−3 22 0.32–0.42 0.367 ± 0.084+0.091
−0.075

0.42–0.52 0.241 ± 0.038+0.075
−0.024

0.52–0.62 0.347 ± 0.034+0.055
−0.033

0.62–0.72 0.353 ± 0.025+0.060
−0.027

0.72–0.82 0.378 ± 0.021+0.036
−0.035

0.82–0.92 0.401 ± 0.021+0.048
−0.026

3.66 · 10−3 22 0.32–0.42 0.297 ± 0.078+0.145
−0.042

0.42–0.52 0.386 ± 0.066+0.078
−0.034

0.52–0.62 0.457 ± 0.055+0.066
−0.071

0.62–0.72 0.442 ± 0.038+0.035
−0.077

0.72–0.82 0.453 ± 0.029+0.059
−0.033

0.82–0.92 0.377 ± 0.023+0.027
−0.040

7.83 · 10−3 22 0.32–0.47 0.215 ± 0.066+0.232
−0.102

0.47–0.62 0.354 ± 0.053+0.087
−0.060

0.62–0.77 0.399 ± 0.036+0.079
−0.032

0.77–0.92 0.442 ± 0.030+0.060
−0.077
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table 6 (cont.)

〈x〉 〈Q2〉 (GeV2) xL range rLP(3)

1.03 · 10−3 44 0.32–0.47 0.356 ± 0.104+0.100
−0.062

0.47–0.62 0.327 ± 0.052+0.074
−0.039

0.62–0.77 0.373 ± 0.038+0.051
−0.034

0.77–0.92 0.381 ± 0.030+0.027
−0.030

1.86 · 10−3 44 0.37–0.42 0.508 ± 0.150+0.221
−0.116

0.47–0.52 0.346 ± 0.073+0.049
−0.077

0.57–0.62 0.444 ± 0.063+0.043
−0.112

0.67–0.72 0.348 ± 0.041+0.027
−0.049

0.77–0.82 0.413 ± 0.033+0.044
−0.052

0.87–0.92 0.352 ± 0.026+0.051
−0.021

3.68 · 10−3 44 0.37–0.42 0.221 ± 0.088+0.065
−0.027

0.47–0.52 0.456 ± 0.097+0.079
−0.105

0.57–0.62 0.303 ± 0.046+0.052
−0.023

0.67–0.72 0.496 ± 0.057+0.036
−0.150

0.77–0.82 0.511 ± 0.044+0.061
−0.056

0.87–0.92 0.408 ± 0.033+0.041
−0.029

7.33 · 10−3 44 0.37–0.42 0.628 ± 0.226+0.297
−0.190

0.47–0.52 0.341 ± 0.090+0.053
−0.060

0.57–0.62 0.418 ± 0.074+0.153
−0.035

0.67–0.72 0.458 ± 0.061+0.044
−0.070

0.77–0.82 0.501 ± 0.048+0.055
−0.081

0.87–0.92 0.448 ± 0.039+0.042
−0.030

1.54 · 10−2 44 0.32–0.52 0.453 ± 0.135+0.078
−0.363

0.52–0.72 0.454 ± 0.062+0.048
−0.071

0.72–0.92 0.385 ± 0.033+0.083
−0.027

2.00 · 10−3 88 0.32–0.47 0.328 ± 0.162+0.151
−0.064

0.47–0.62 0.462 ± 0.121+0.111
−0.122

0.62–0.77 0.307 ± 0.045+0.045
−0.030

0.77–0.92 0.339 ± 0.040+0.048
−0.033

3.59 · 10−3 88 0.32–0.47 0.449 ± 0.145+0.058
−0.134

0.47–0.62 0.509 ± 0.090+0.120
−0.098

0.62–0.77 0.402 ± 0.049+0.194
−0.034

0.77–0.92 0.393 ± 0.034+0.068
−0.022

7.37 · 10−3 88 0.32–0.47 0.491 ± 0.178+0.164
−0.131

0.47–0.62 0.345 ± 0.078+0.050
−0.042

0.62–0.77 0.364 ± 0.046+0.028
−0.034

0.77–0.92 0.440 ± 0.042+0.087
−0.032

1.42 · 10−2 88 0.32–0.47 0.351 ± 0.133+0.171
−0.054
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table 6 (cont.)

〈x〉 〈Q2〉 (GeV2) xL range rLP(3)

0.47–0.62 0.479 ± 0.101+0.169
−0.103

0.62–0.77 0.390 ± 0.054+0.098
−0.037

0.77–0.92 0.498 ± 0.050+0.042
−0.112

3.01 · 10−2 88 0.32–0.52 0.449 ± 0.211+0.075
−0.264

0.52–0.72 0.330 ± 0.063+0.121
−0.023

0.72–0.92 0.440 ± 0.056+0.062
−0.044

4.00 · 10−3 237 0.32–0.52 0.250 ± 0.153+0.115
−0.129

0.52–0.72 0.175 ± 0.068+0.241
−0.013

0.72–0.92 0.451 ± 0.071+0.079
−0.044

7.52 · 10−3 237 0.32–0.52 0.467 ± 0.195+0.105
−0.086

0.52–0.72 0.482 ± 0.088+0.067
−0.205

0.72–0.92 0.430 ± 0.049+0.069
−0.053

1.47 · 10−2 237 0.32–0.47 0.301 ± 0.156+0.366
−0.040

0.47–0.62 0.249 ± 0.074+0.087
−0.037

0.62–0.77 0.445 ± 0.070+0.112
−0.040

0.77–0.92 0.381 ± 0.045+0.040
−0.028

3.25 · 10−2 237 0.32–0.47 0.102 ± 0.082+0.119
−0.011

0.47–0.62 0.355 ± 0.090+0.049
−0.072

0.62–0.77 0.359 ± 0.055+0.135
−0.028

0.77–0.92 0.403 ± 0.049+0.041
−0.064
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〈x〉 〈Q2〉 (GeV2) xL range rLP(3)

9.6 · 10−5 4.2 0.32–0.47 0.082 ± 0.015+0.043
−0.014

0.47–0.62 0.091 ± 0.012+0.015
−0.019

0.62–0.77 0.080 ± 0.006+0.005
−0.026

0.77–0.92 0.104 ± 0.008+0.007
−0.014

1.7 · 10−4 4.2 0.32–0.47 0.103 ± 0.013+0.006
−0.026

0.47–0.62 0.083 ± 0.008+0.009
−0.010

0.62–0.77 0.096 ± 0.005+0.003
−0.023

0.77–0.92 0.089 ± 0.004+0.003
−0.008

3.5 · 10−4 4.2 0.32–0.47 0.077 ± 0.010+0.009
−0.009

0.47–0.62 0.087 ± 0.008+0.012
−0.006

0.62–0.77 0.108 ± 0.006+0.009
−0.007

0.77–0.92 0.093 ± 0.004+0.004
−0.003

6.9 · 10−4 4.2 0.32–0.47 0.077 ± 0.012+0.013
−0.004

0.47–0.62 0.085 ± 0.009+0.007
−0.007

0.62–0.77 0.095 ± 0.006+0.009
−0.002

0.77–0.92 0.087 ± 0.004+0.006
−0.002

1.46 · 10−3 4.2 0.32–0.47 0.074 ± 0.016+0.012
−0.015

0.47–0.62 0.046 ± 0.008+0.011
−0.004

0.62–0.77 0.083 ± 0.006+0.012
−0.003

0.77–0.92 0.086 ± 0.006+0.005
−0.007

Table 7. The leading proton production rate, rLP(3), measured as a function of xL for protons

with p2
T < 0.04 GeV 2, in bins of x and Q2, with averages 〈x〉 and 〈Q2〉. Statistical uncertainties

are listed first, followed by systematic uncertainties.

table 7 (cont.)

〈x〉 〈Q2〉 (GeV2) xL range rLP(3)

1.9 · 10−4 7.3 0.32–0.47 0.093 ± 0.017+0.009
−0.015

0.47–0.62 0.098 ± 0.012+0.008
−0.027

0.62–0.77 0.087 ± 0.007+0.013
−0.003

0.77–0.92 0.092 ± 0.007+0.006
−0.015

3.4 · 10−4 7.3 0.32–0.47 0.090 ± 0.015+0.012
−0.019

0.47–0.62 0.103 ± 0.011+0.006
−0.011

0.62–0.77 0.079 ± 0.005+0.007
−0.002

0.77–0.92 0.088 ± 0.005+0.004
−0.003

6.9 · 10−4 7.3 0.32–0.47 0.090 ± 0.015+0.005
−0.025

0.47–0.62 0.093 ± 0.011+0.004
−0.017

0.62–0.77 0.102 ± 0.007+0.004
−0.006

0.77–0.92 0.095 ± 0.006+0.002
−0.017

1.36 · 10−3 7.3 0.32–0.47 0.075 ± 0.014+0.011
−0.006
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table 7 (cont.)

〈x〉 〈Q2〉 (GeV2) xL range rLP(3)

0.47–0.62 0.104 ± 0.013+0.010
−0.014

0.62–0.77 0.113 ± 0.008+0.003
−0.017

0.77–0.92 0.098 ± 0.006+0.006
−0.009

2.67 · 10−3 7.3 0.32–0.47 0.067 ± 0.025+0.007
−0.034

0.47–0.62 0.112 ± 0.028+0.023
−0.036

0.62–0.77 0.097 ± 0.015+0.017
−0.012

0.77–0.92 0.095 ± 0.011+0.003
−0.017

2.6 · 10−4 11 0.32–0.47 0.098 ± 0.024+0.006
−0.031

0.47–0.62 0.075 ± 0.013+0.038
−0.006

0.62–0.77 0.129 ± 0.014+0.005
−0.011

0.77–0.92 0.085 ± 0.008+0.003
−0.005

4.6 · 10−4 11 0.32–0.47 0.114 ± 0.018+0.008
−0.027

0.47–0.62 0.081 ± 0.009+0.014
−0.004

0.62–0.77 0.101 ± 0.007+0.003
−0.011

0.77–0.92 0.099 ± 0.006+0.007
−0.003

9.2 · 10−4 11 0.32–0.47 0.080 ± 0.013+0.009
−0.006

0.47–0.62 0.110 ± 0.012+0.019
−0.004

0.62–0.77 0.080 ± 0.006+0.009
−0.007

0.77–0.92 0.091 ± 0.005+0.002
−0.005

1.83 · 10−3 11 0.32–0.47 0.082 ± 0.015+0.008
−0.007

0.47–0.62 0.094 ± 0.011+0.004
−0.018

0.62–0.77 0.100 ± 0.007+0.004
−0.006

0.77–0.92 0.089 ± 0.005+0.008
−0.002

3.98 · 10−3 11 0.32–0.47 0.041 ± 0.015+0.009
−0.020

0.47–0.62 0.118 ± 0.021+0.010
−0.042

0.62–0.77 0.102 ± 0.010+0.003
−0.024

0.77–0.92 0.107 ± 0.009+0.006
−0.014

5.1 · 10−4 22 0.32–0.47 0.098 ± 0.029+0.013
−0.056

0.47–0.62 0.081 ± 0.014+0.010
−0.006

0.62–0.77 0.114 ± 0.014+0.021
−0.007

0.77–0.92 0.088 ± 0.009+0.005
−0.023

9.2 · 10−4 22 0.32–0.47 0.094 ± 0.018+0.007
−0.020

0.47–0.62 0.094 ± 0.012+0.018
−0.003

0.62–0.77 0.100 ± 0.008+0.009
−0.008

0.77–0.92 0.090 ± 0.006+0.008
−0.004

1.84 · 10−3 22 0.32–0.47 0.089 ± 0.017+0.022
−0.008

0.47–0.62 0.080 ± 0.010+0.007
−0.010

0.62–0.77 0.089 ± 0.007+0.003
−0.007
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table 7 (cont.)

〈x〉 〈Q2〉 (GeV2) xL range rLP(3)

0.77–0.92 0.089 ± 0.006+0.010
−0.004

3.66 · 10−3 22 0.32–0.47 0.078 ± 0.017+0.026
−0.005

0.47–0.62 0.120 ± 0.019+0.009
−0.028

0.62–0.77 0.114 ± 0.010+0.007
−0.010

0.77–0.92 0.099 ± 0.007+0.013
−0.002

7.83 · 10−3 22 0.32–0.47 0.054 ± 0.019+0.050
−0.024

0.47–0.62 0.087 ± 0.018+0.011
−0.043

0.62–0.77 0.087 ± 0.010+0.041
−0.005

0.77–0.92 0.116 ± 0.012+0.033
−0.016

1.03 · 10−3 44 0.32–0.47 0.092 ± 0.031+0.020
−0.017

0.47–0.62 0.086 ± 0.020+0.048
−0.010

0.62–0.77 0.105 ± 0.016+0.018
−0.031

0.77–0.92 0.108 ± 0.013+0.015
−0.005

1.86 · 10−3 44 0.32–0.47 0.096 ± 0.023+0.024
−0.010

0.47–0.62 0.087 ± 0.016+0.005
−0.028

0.62–0.77 0.130 ± 0.015+0.004
−0.029

0.77–0.92 0.102 ± 0.010+0.004
−0.016

3.68 · 10−3 44 0.32–0.47 0.077 ± 0.023+0.038
−0.011

0.47–0.62 0.079 ± 0.016+0.004
−0.019

0.62–0.77 0.139 ± 0.017+0.005
−0.023

0.77–0.92 0.117 ± 0.012+0.003
−0.013

7.33 · 10−3 44 0.32–0.47 0.124 ± 0.039+0.021
−0.030

0.47–0.62 0.104 ± 0.023+0.027
−0.005

0.62–0.77 0.107 ± 0.015+0.022
−0.004

0.77–0.92 0.096 ± 0.011+0.023
−0.004

1.54 · 10−2 44 0.32–0.47 0.076 ± 0.036+0.075
−0.017

0.47–0.62 0.118 ± 0.034+0.020
−0.040

0.62–0.77 0.108 ± 0.019+0.036
−0.009

0.77–0.92 0.101 ± 0.015+0.022
−0.015

2.00 · 10−3 88 0.32–0.52 0.130 ± 0.053+0.014
−0.076

0.52–0.72 0.128 ± 0.031+0.038
−0.049

0.72–0.92 0.089 ± 0.014+0.021
−0.002

3.59 · 10−3 88 0.32–0.52 0.126 ± 0.037+0.009
−0.046

0.52–0.72 0.080 ± 0.014+0.035
−0.004

0.72–0.92 0.104 ± 0.012+0.015
−0.003

7.37 · 10−3 88 0.32–0.52 0.091 ± 0.031+0.034
−0.015

0.52–0.72 0.077 ± 0.017+0.029
−0.006

0.72–0.92 0.090 ± 0.011+0.026
−0.004
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table 7 (cont.)

〈x〉 〈Q2〉 (GeV2) xL range rLP(3)

1.42 · 10−2 88 0.32–0.52 0.075 ± 0.024+0.048
−0.005

0.52–0.72 0.118 ± 0.027+0.051
−0.010

0.72–0.92 0.103 ± 0.014+0.034
−0.007

3.01 · 10−2 88 0.32–0.52 0.151 ± 0.075+0.022
−0.143

0.52–0.72 0.081 ± 0.020+0.015
−0.012

0.72–0.92 0.099 ± 0.017+0.033
−0.004

4.00 · 10−3 237 0.32–0.52 0.053 ± 0.036+0.020
−0.045

0.52–0.72 0.092 ± 0.033+0.102
−0.006

0.72–0.92 0.116 ± 0.025+0.022
−0.010

7.52 · 10−3 237 0.32–0.52 0.116 ± 0.052+0.036
−0.015

0.52–0.72 0.108 ± 0.030+0.016
−0.057

0.72–0.92 0.098 ± 0.017+0.007
−0.024

1.47 · 10−2 237 0.32–0.52 0.072 ± 0.036+0.053
−0.007

0.52–0.72 0.098 ± 0.025+0.062
−0.022

0.72–0.92 0.128 ± 0.020+0.012
−0.025

3.25 · 10−2 237 0.32–0.52 0.033 ± 0.020+0.073
−0.002

0.52–0.72 0.071 ± 0.019+0.058
−0.013

0.72–0.92 0.102 ± 0.017+0.014
−0.019
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〈x〉 〈Q2〉 (GeV2) xL range rLP(3)

9.6 · 10−5 4.2 0.38–0.56 0.146 ± 0.027+0.022
−0.039

0.56–0.74 0.125 ± 0.012+0.015
−0.013

0.74–0.92 0.177 ± 0.013+0.017
−0.058

1.7 · 10−4 4.2 0.38–0.56 0.133 ± 0.017+0.025
−0.026

0.56–0.74 0.145 ± 0.010+0.006
−0.026

0.74–0.92 0.137 ± 0.006+0.009
−0.005

3.5 · 10−4 4.2 0.38–0.56 0.123 ± 0.018+0.020
−0.011

0.56–0.74 0.140 ± 0.009+0.009
−0.013

0.74–0.92 0.141 ± 0.007+0.008
−0.012

6.9 · 10−4 4.2 0.38–0.56 0.128 ± 0.019+0.018
−0.028

0.56–0.74 0.128 ± 0.010+0.008
−0.018

0.74–0.92 0.151 ± 0.008+0.006
−0.020

1.46 · 10−3 4.2 0.38–0.56 0.160 ± 0.033+0.035
−0.016

0.56–0.74 0.156 ± 0.018+0.015
−0.019

0.74–0.92 0.136 ± 0.010+0.017
−0.020

1.9 · 10−4 7.3 0.38–0.56 0.126 ± 0.023+0.048
−0.006

0.56–0.74 0.123 ± 0.012+0.009
−0.016

0.74–0.92 0.149 ± 0.011+0.004
−0.020

3.4 · 10−4 7.3 0.38–0.56 0.140 ± 0.022+0.018
−0.028

0.56–0.74 0.144 ± 0.012+0.006
−0.026

0.74–0.92 0.136 ± 0.008+0.008
−0.008

6.9 · 10−4 7.3 0.38–0.56 0.123 ± 0.021+0.019
−0.022

0.56–0.74 0.122 ± 0.011+0.012
−0.004

0.74–0.92 0.141 ± 0.008+0.009
−0.014

1.36 · 10−3 7.3 0.38–0.56 0.158 ± 0.027+0.052
−0.024

0.56–0.74 0.140 ± 0.013+0.016
−0.009

0.74–0.92 0.149 ± 0.010+0.013
−0.006

2.67 · 10−3 7.3 0.38–0.56 0.175 ± 0.070+0.023
−0.153

0.56–0.74 0.193 ± 0.038+0.077
−0.054

0.74–0.92 0.161 ± 0.021+0.032
−0.024

Table 8. The leading proton production rate, rLP(3), measured as a function of xL for protons with

0.04 < p2
T < 0.15 GeV 2, in bins of x and Q2, with averages 〈x〉 and 〈Q2〉. Statistical uncertainties

are listed first, followed by systematic uncertainties.

table 8 (cont.)

〈x〉 〈Q2〉 (GeV2) xL range rLP(3)

2.6 · 10−4 11 0.38–0.56 0.084 ± 0.021+0.033
−0.008

0.56–0.74 0.151 ± 0.019+0.010
−0.030

0.74–0.92 0.140 ± 0.012+0.013
−0.006

4.6 · 10−4 11 0.38–0.56 0.134 ± 0.020+0.056
−0.009
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table 8 (cont.)

〈x〉 〈Q2〉 (GeV2) xL range rLP(3)

0.56–0.74 0.132 ± 0.011+0.009
−0.016

0.74–0.92 0.133 ± 0.007+0.032
−0.003

9.2 · 10−4 11 0.38–0.56 0.129 ± 0.021+0.008
−0.015

0.56–0.74 0.140 ± 0.011+0.032
−0.006

0.74–0.92 0.150 ± 0.008+0.003
−0.022

1.83 · 10−3 11 0.38–0.56 0.115 ± 0.018+0.026
−0.007

0.56–0.74 0.165 ± 0.013+0.007
−0.036

0.74–0.92 0.127 ± 0.007+0.022
−0.003

3.98 · 10−3 11 0.38–0.56 0.110 ± 0.031+0.099
−0.013

0.56–0.74 0.129 ± 0.018+0.007
−0.032

0.74–0.92 0.157 ± 0.013+0.018
−0.024

5.1 · 10−4 22 0.38–0.56 0.112 ± 0.029+0.079
−0.009

0.56–0.74 0.133 ± 0.017+0.009
−0.019

0.74–0.92 0.148 ± 0.013+0.037
−0.003

9.2 · 10−4 22 0.38–0.56 0.146 ± 0.028+0.039
−0.025

0.56–0.74 0.153 ± 0.015+0.007
−0.025

0.74–0.92 0.157 ± 0.010+0.004
−0.016

1.84 · 10−3 22 0.38–0.56 0.101 ± 0.019+0.050
−0.006

0.56–0.74 0.141 ± 0.013+0.009
−0.012

0.74–0.92 0.144 ± 0.009+0.019
−0.006

3.66 · 10−3 22 0.38–0.56 0.177 ± 0.036+0.042
−0.018

0.56–0.74 0.165 ± 0.018+0.014
−0.020

0.74–0.92 0.156 ± 0.011+0.005
−0.020

7.83 · 10−3 22 0.38–0.56 0.166 ± 0.046+0.063
−0.014

0.56–0.74 0.185 ± 0.031+0.011
−0.065

0.74–0.92 0.147 ± 0.015+0.007
−0.023

1.03 · 10−3 44 0.38–0.56 0.128 ± 0.042+0.155
−0.008

0.56–0.74 0.090 ± 0.016+0.052
−0.006

0.74–0.92 0.152 ± 0.018+0.005
−0.042

1.86 · 10−3 44 0.38–0.56 0.190 ± 0.048+0.059
−0.015

0.56–0.74 0.136 ± 0.019+0.006
−0.029

0.74–0.92 0.115 ± 0.010+0.049
−0.003

3.68 · 10−3 44 0.38–0.56 0.082 ± 0.023+0.176
−0.010

0.56–0.74 0.156 ± 0.023+0.017
−0.031

0.74–0.92 0.158 ± 0.015+0.021
−0.004

7.33 · 10−3 44 0.38–0.56 0.138 ± 0.045+0.070
−0.011

0.56–0.74 0.169 ± 0.028+0.027
−0.022

0.74–0.92 0.188 ± 0.020+0.010
−0.056
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table 8 (cont.)

〈x〉 〈Q2〉 (GeV2) xL range rLP(3)

1.54 · 10−2 44 0.38–0.56 0.130 ± 0.055+0.056
−0.036

0.56–0.74 0.195 ± 0.043+0.042
−0.078

0.74–0.92 0.118 ± 0.016+0.052
−0.004

2.00 · 10−3 88 0.38–0.65 0.092 ± 0.030+0.025
−0.018

0.65–0.92 0.109 ± 0.018+0.020
−0.009

3.59 · 10−3 88 0.38–0.65 0.236 ± 0.053+0.030
−0.098

0.65–0.92 0.153 ± 0.018+0.018
−0.006

7.37 · 10−3 88 0.38–0.65 0.190 ± 0.047+0.078
−0.030

0.65–0.92 0.191 ± 0.024+0.022
−0.047

1.42 · 10−2 88 0.38–0.65 0.153 ± 0.040+0.072
−0.018

0.65–0.92 0.179 ± 0.026+0.004
−0.063

3.01 · 10−2 88 0.38–0.65 0.137 ± 0.053+0.095
−0.010

0.65–0.92 0.158 ± 0.032+0.030
−0.026

4.00 · 10−3 237 0.38–0.65 0.051 ± 0.048+0.119
−0.003

0.65–0.92 0.067 ± 0.027+0.069
−0.012

7.52 · 10−3 237 0.38–0.65 0.162 ± 0.053+0.023
−0.048

0.65–0.92 0.164 ± 0.027+0.094
−0.036

1.47 · 10−2 237 0.38–0.65 0.161 ± 0.052+0.049
−0.048

0.65–0.92 0.095 ± 0.015+0.056
−0.005

3.25 · 10−2 237 0.38–0.65 0.179 ± 0.054+0.026
−0.056

0.65–0.92 0.123 ± 0.019+0.017
−0.008
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〈x〉 〈Q2〉 (GeV2) xL range rLP(3)

9.6 · 10−5 4.2 0.62–0.72 0.114 ± 0.027+0.072
−0.014

0.72–0.82 0.116 ± 0.033+0.066
−0.026

0.82–0.92 0.121 ± 0.016+0.054
−0.015

1.7 · 10−4 4.2 0.62–0.72 0.102 ± 0.014+0.018
−0.026

0.72–0.82 0.105 ± 0.018+0.053
−0.034

0.82–0.92 0.133 ± 0.012+0.036
−0.011

3.5 · 10−4 4.2 0.62–0.72 0.114 ± 0.018+0.010
−0.021

0.72–0.82 0.212 ± 0.043+0.023
−0.172

0.82–0.92 0.099 ± 0.010+0.010
−0.011

6.9 · 10−4 4.2 0.62–0.72 0.097 ± 0.015+0.040
−0.007

0.72–0.82 0.166 ± 0.034+0.036
−0.048

0.82–0.92 0.151 ± 0.016+0.011
−0.020

1.46 · 10−3 4.2 0.62–0.72 0.106 ± 0.024+0.015
−0.022

0.72–0.82 0.090 ± 0.027+0.021
−0.039

0.82–0.92 0.154 ± 0.022+0.043
−0.033

1.9 · 10−4 7.3 0.62–0.72 0.158 ± 0.034+0.012
−0.069

0.72–0.82 0.068 ± 0.026+0.030
−0.040

0.82–0.92 0.100 ± 0.017+0.019
−0.035

3.4 · 10−4 7.3 0.62–0.72 0.138 ± 0.025+0.013
−0.025

0.72–0.82 0.149 ± 0.034+0.020
−0.077

0.82–0.92 0.110 ± 0.013+0.012
−0.017

6.9 · 10−4 7.3 0.62–0.72 0.137 ± 0.025+0.010
−0.042

0.72–0.82 0.098 ± 0.024+0.009
−0.035

0.82–0.92 0.160 ± 0.018+0.012
−0.032

1.36 · 10−3 7.3 0.62–0.72 0.127 ± 0.024+0.038
−0.008

0.72–0.82 0.170 ± 0.040+0.068
−0.066

0.82–0.92 0.127 ± 0.016+0.009
−0.023

2.67 · 10−3 7.3 0.62–0.77 0.245 ± 0.103+0.119
−0.120

0.77–0.92 0.113 ± 0.027+0.060
−0.018

Table 9. The leading proton production rate, rLP(3), measured as a function of xL for protons with

0.15 < p2
T < 0.5 GeV 2, in bins of x and Q2, with averages 〈x〉 and 〈Q2〉. Statistical uncertainties

are listed first, followed by systematic uncertainties.

table 9 (cont.)

〈x〉 〈Q2〉 (GeV2) xL range rLP(3)

2.6 · 10−4 11 0.62–0.72 0.170 ± 0.047+0.063
−0.036

0.72–0.82 0.088 ± 0.048+0.225
−0.012

0.82–0.92 0.169 ± 0.027+0.023
−0.059

4.6 · 10−4 11 0.62–0.72 0.176 ± 0.030+0.015
−0.040

0.72–0.82 0.126 ± 0.030+0.076
−0.074
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table 9 (cont.)

〈x〉 〈Q2〉 (GeV2) xL range rLP(3)

0.82–0.92 0.134 ± 0.015+0.020
−0.027

9.2 · 10−4 11 0.62–0.72 0.142 ± 0.023+0.015
−0.039

0.72–0.82 0.158 ± 0.040+0.026
−0.117

0.82–0.92 0.148 ± 0.016+0.017
−0.019

1.83 · 10−3 11 0.62–0.72 0.107 ± 0.018+0.018
−0.012

0.72–0.82 0.071 ± 0.019+0.089
−0.008

0.82–0.92 0.145 ± 0.015+0.020
−0.017

3.98 · 10−3 11 0.62–0.77 0.135 ± 0.034+0.058
−0.014

0.77–0.92 0.199 ± 0.033+0.018
−0.050

5.1 · 10−4 22 0.62–0.72 0.125 ± 0.033+0.019
−0.052

0.72–0.82 0.179 ± 0.069+0.038
−0.121

0.82–0.92 0.127 ± 0.020+0.053
−0.012

9.2 · 10−4 22 0.62–0.72 0.127 ± 0.024+0.057
−0.016

0.72–0.82 0.106 ± 0.027+0.014
−0.019

0.82–0.92 0.147 ± 0.018+0.010
−0.021

1.84 · 10−3 22 0.62–0.72 0.084 ± 0.017+0.028
−0.008

0.72–0.82 0.158 ± 0.039+0.017
−0.063

0.82–0.92 0.157 ± 0.021+0.016
−0.036

3.66 · 10−3 22 0.62–0.72 0.115 ± 0.029+0.019
−0.052

0.72–0.82 0.112 ± 0.030+0.097
−0.011

0.82–0.92 0.124 ± 0.020+0.018
−0.068

7.83 · 10−3 22 0.62–0.77 0.110 ± 0.037+0.064
−0.024

0.77–0.92 0.223 ± 0.044+0.015
−0.127

1.03 · 10−3 44 0.62–0.77 0.171 ± 0.054+0.048
−0.039

0.77–0.92 0.100 ± 0.023+0.014
−0.024

1.86 · 10−3 44 0.62–0.77 0.124 ± 0.030+0.013
−0.024

0.77–0.92 0.141 ± 0.022+0.068
−0.015

3.68 · 10−3 44 0.62–0.77 0.170 ± 0.049+0.060
−0.058

0.77–0.92 0.117 ± 0.022+0.026
−0.016

7.33 · 10−3 44 0.62–0.77 0.185 ± 0.078+0.044
−0.103

0.77–0.92 0.120 ± 0.024+0.037
−0.074

1.54 · 10−2 44 0.62–0.77 0.196 ± 0.078+0.228
−0.020

0.77–0.92 0.182 ± 0.050+0.041
−0.079

2.00 · 10−3 88 0.62–0.77 0.156 ± 0.077+0.040
−0.081

0.77–0.92 0.125 ± 0.034+0.011
−0.047

3.59 · 10−3 88 0.62–0.77 0.208 ± 0.087+0.115
−0.044

0.77–0.92 0.129 ± 0.027+0.067
−0.019

7.37 · 10−3 88 0.62–0.77 0.061 ± 0.031+0.003
−0.022
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table 9 (cont.)

〈x〉 〈Q2〉 (GeV2) xL range rLP(3)

0.77–0.92 0.127 ± 0.035+0.050
−0.040

1.42 · 10−2 88 0.62–0.77 0.145 ± 0.056+0.338
−0.013

0.77–0.92 0.268 ± 0.079+0.030
−0.264

3.01 · 10−2 88 0.62–0.77 0.106 ± 0.063+0.200
−0.040

0.77–0.92 0.215 ± 0.107+0.031
−0.146

4.00 · 10−3 237 0.62–0.92 0.248 ± 0.107+0.024
−0.132

7.52 · 10−3 237 0.62–0.92 0.183 ± 0.049+0.068
−0.027

1.47 · 10−2 237 0.62–0.92 0.203 ± 0.057+0.016
−0.059

3.25 · 10−2 237 0.62–0.92 0.164 ± 0.045+0.061
−0.055
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Figure 13. The leading proton production rate, rLP(2), as a function of x in bins of Q2, in the

kinematic range indicated in the figure. The bands represent the correlated systematic uncertainty.

The rate of leading proton production as a function of x and Q2, integrated over 0.32 <

xL < 0.92 and p2
T < 0.5 GeV2, rLP(2)(x,Q2), is shown in figure 13 and given in table 10.

The ratio rLP(2) is approximately constant as a function of x and of Q2. The mean value

〈rLP(2)〉 = 0.240± 0.001(stat.)+0.020
−0.018(syst.) means that approximately 24% of inclusive DIS

events have a leading proton in the range 0.32 < xL < 0.92 with p2
T < 0.5 GeV2.

The ratio 〈rLP(2)〉 averaged over x as a function of Q2 is shown in figure 14 and given

in table 11, in the range 0.32 < xL < 0.92, p2
T < 0.5 GeV2 and 45 < W < 225 GeV.
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〈Q2〉 (GeV2) x rLP(2)

4.2 9.6 · 10−5 0.256 ± 0.006+0.023
−0.022

1.7 · 10−4 0.245 ± 0.004+0.018
−0.021

3.5 · 10−4 0.237 ± 0.004+0.018
−0.017

6.9 · 10−4 0.234 ± 0.004+0.018
−0.016

1.46 · 10−3 0.214 ± 0.006+0.020
−0.016

7.3 1.9 · 10−4 0.246 ± 0.006+0.020
−0.024

3.4 · 10−4 0.231 ± 0.005+0.019
−0.016

6.9 · 10−4 0.236 ± 0.005+0.018
−0.021

1.36 · 10−3 0.243 ± 0.006+0.019
−0.018

2.67 · 10−3 0.252 ± 0.012+0.025
−0.030

11 2.6 · 10−4 0.253 ± 0.007+0.020
−0.016

4.6 · 10−4 0.241 ± 0.005+0.020
−0.015

9.2 · 10−4 0.242 ± 0.005+0.018
−0.019

1.83 · 10−3 0.230 ± 0.005+0.019
−0.014

3.98 · 10−3 0.258 ± 0.008+0.019
−0.030

22 5.1 · 10−4 0.242 ± 0.007+0.020
−0.023

9.2 · 10−4 0.244 ± 0.006+0.018
−0.018

1.84 · 10−4 0.227 ± 0.005+0.022
−0.016

3.66 · 10−3 0.253 ± 0.007+0.020
−0.018

7.83 · 10−3 0.254 ± 0.010+0.025
−0.020

44 1.03 · 10−3 0.228 ± 0.009+0.017
−0.015

1.86 · 10−3 0.238 ± 0.008+0.019
−0.016

3.68 · 10−3 0.270 ± 0.009+0.020
−0.021

7.33 · 10−3 0.271 ± 0.011+0.023
−0.017

1.54 · 10−3 0.253 ± 0.014+0.031
−0.016

88 2.00 · 10−3 0.215 ± 0.013+0.015
−0.019

3.59 · 10−3 0.245 ± 0.011+0.043
−0.017

7.37 · 10−3 0.243 ± 0.013+0.026
−0.017

1.42 · 10−2 0.265 ± 0.015+0.032
−0.023

3.01 · 10−2 0.241 ± 0.019+0.034
−0.024

237 4.00 · 10−2 0.242 ± 0.024+0.069
−0.021

7.52 · 10−2 0.264 ± 0.018+0.029
−0.038

1.47 · 10−2 0.227 ± 0.015+0.029
−0.017

3.25 · 10−2 0.232 ± 0.015+0.021
−0.019

Table 10. The leading proton production rate, rLP(2), measured as a function of x in bins of Q2,

with average 〈Q2〉, for protons with 0.32 < xL < 0.92 and p2
T < 0.5 GeV 2. Statistical uncertainties

are listed first, followed by systematic uncertainties.

A mild increase with Q2 cannot be excluded. To further investigate the Q2 dependence,

the rates integrated over 0.6 < xL < 0.97 can be compared to the equivalent rates for
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Q2 (GeV2) 〈rLP(2)〉
0.6 < xL < 0.97 0.32 < xL < 0.92

5.1 0.145 ± 0.001+0.010
−0.010 0.238 ± 0.002+0.018

−0.017

15.8 0.149 ± 0.001+0.011
−0.009 0.241 ± 0.002+0.018

−0.015

81.1 0.151 ± 0.002+0.011
−0.009 0.245 ± 0.003+0.019

−0.015

Table 11. The leading proton production rate, 〈rLP(2)〉, averaged over x, as a function of Q2, for

protons with p2
T < 0.5 GeV 2 in two xL ranges as denoted in the table. Statistical uncertainties are

listed first, followed by systematic uncertainties.

〈Q2〉 = 0.29 GeV2 measured by the ZEUS collaboration previously [7]. The result is shown

in figure 14 and included in table 11. Assuming that the systematic uncertainties have

a similar origin, dominated by the LPS acceptance, a steady rise with Q2 is observed. A

similar effect was observed in leading neutron production [36], where it was attributed to

absorption and rescattering effects [44], which disappear when the transverse size of the

virtual photon decreases with increasing Q2.

10.4 The leading proton structure functions

The ratio rLP(2) can be expressed as the ratio of F
LP(2)
2 to F2,

rLP(2)(x,Q2) =
F

LP(2)
2 (x,Q2)

F2(x,Q2)
, (10.2)

where F
LP(2)
2 is obtained from F

LP(4)
2 by integrating over xL and p2

T . Therefore, the

values of F
LP(2)
2 can be obtained from the measured rLP(2) and F2. The values of F2 were

obtained from the NLO ZEUS-S fit parameterisation of the parton distribution functions

of the proton [45].

The structure-function F
LP(2)
2 is presented in figure 15, plotted as a function of x at

fixed Q2 values for 0.32 < xL < 0.92, p2
T < 0.5 GeV2 and given in table 12. The curves in

the plot show the F2 parameterisation scaled by the average value 〈rLP(2)〉 = 0.24 and the

bands represent the one-standard-deviation limits of the NLO ZEUS-S parameterisation.

A very good description of F
LP(2)
2 is obtained, as expected from the approximate x and Q2

independence of rLP(2).

10.5 Comparison to leading neutrons

The rate of leading proton production for p2
T <0.04 GeV2 can be compared to the recent

ZEUS measurement of leading neutrons [36]. The comparison is shown in figure 16. In the

range 0.32 < xL < 0.92, there are approximately twice as many protons as neutrons. This

is consistent with the additive quark model [46], in which the probabilities to have a proton

or a neutron in the final state are 2/3 and 1/3, respectively. In a particle exchange model,

the exchange of isovector particles would result in half as many protons as neutrons. Thus,

exchange of isoscalars must be invoked to account for the observed proton rate, notably
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Figure 14. The leading proton production rate averaged over x, 〈rLP(2)〉, as a function of Q2 in

two different ranges of xL, in the kinematic range indicated in the figure. The bands represent the

correlated systematic uncertainty.

the f0 trajectory at intermediate-low xL and the Pomeron trajectory at high xL [13]. This

contribution is likely also to explain the different behaviour of the rates at large xL.

The slopes of the p2
T distributions for leading protons and neutrons are shown in

figure 17. Although the p2
T and Q2 ranges are different, the two slopes have similar values

in the region 0.65 < xL < 0.8.

10.6 Comparison to models

The predictions of the model of Szczurek et al. [13] are compared to the leading proton

production rate 1/σinc · dσLP/dxL and the p2
T slopes in figure 18. In this model, leading

proton production for 0.6 < xL < 0.9 is dominated by isoscalar Reggeon exchange. Diffrac-
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Figure 15. The leading proton structure function, FLP(2), as a function of x in bins of Q2, in the

kinematic range indicated in the figure. For clarity, only the statistical uncertainties are shown.

The systematic uncertainties are listed in table 12. The lines show the F2 parameterisation scaled

by 0.24, the approximate average value of rLP(2). The bands show the one-standard deviation limits

of the F2 parameterisation.

tive processes due to Pomeron exchange become increasingly important as xL approaches

unity. The contribution of pion exchange plays an important role in the medium xL range.

The model describes the shape of the longitudinal momentum spectrum and of the p2
T

slopes reasonably well. The normalisation of the Reggeon contribution, which has a large

theoretical uncertainty [13], may be constrained by this measurement. The model does not

include absorptive corrections and rescattering effects [44], since they are expected to be

small in DIS regime.
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〈Q2〉 (GeV2) x F
LP(2)
2

4.2 9.6 · 10−5 0.262 ± 0.006+0.023
−0.024

1.7 · 10−4 0.234 ± 0.004+0.021
−0.018

3.5 · 10−4 0.195 ± 0.003+0.015
−0.015

6.9 · 10−4 0.167 ± 0.003+0.012
−0.013

1.46 · 10−3 0.133 ± 0.004+0.011
−0.013

7.3 1.9 · 10−4 0.290 ± 0.007+0.030
−0.024

3.4 · 10−4 0.239 ± 0.005+0.018
−0.020

6.9 · 10−4 0.209 ± 0.004+0.019
−0.016

1.36 · 10−3 0.183 ± 0.004+0.014
−0.015

2.67 · 10−3 0.165 ± 0.008+0.021
−0.018

11 2.6 · 10−4 0.327 ± 0.010+0.023
−0.027

4.6 · 10−4 0.281 ± 0.005+0.018
−0.024

9.2 · 10−4 0.239 ± 0.005+0.020
−0.019

1.83 · 10−3 0.191 ± 0.004+0.012
−0.017

3.98 · 10−3 0.181 ± 0.006+0.022
−0.015

22 5.1 · 10−4 0.336 ± 0.010+0.033
−0.030

9.2 · 10−4 0.299 ± 0.007+0.023
−0.023

1.84 · 10−3 0.230 ± 0.005+0.017
−0.023

3.66 · 10−3 0.210 ± 0.006+0.016
−0.018

7.83 · 10−3 0.176 ± 0.007+0.015
−0.018

44 1.03 · 10−4 0.322 ± 0.013+0.025
−0.027

1.86 · 10−3 0.286 ± 0.009+0.022
−0.025

3.68 · 10−3 0.265 ± 0.009+0.023
−0.022

7.33 · 10−3 0.215 ± 0.008+0.016
−0.020

1.54 · 10−2 0.164 ± 0.009+0.014
−0.022

88 2.00 · 10−3 0.286 ± 0.017+0.030
−0.027

3.59 · 10−3 0.275 ± 0.013+0.023
−0.050

7.37 · 10−3 0.214 ± 0.011+0.018
−0.026

1.42 · 10−2 0.190 ± 0.010+0.020
−0.025

3.01 · 10−2 0.138 ± 0.011+0.017
−0.022

273 4.00 · 10−3 0.287 ± 0.028+0.038
−0.087

7.52 · 10−3 0.260 ± 0.017+0.041
−0.034

1.47 · 10−2 0.173 ± 0.012+0.017
−0.025

3.25 · 10−2 0.139 ± 0.009+0.015
−0.016

Table 12. The leading proton structure function, F
LP(2)
2 , measured as a function of x in bins

of Q2, with average 〈Q2〉, for protons with 0.32 < xL < 0.92 and p2
T < 0.5 GeV 2. Statistical

uncertainties are listed first, followed by systematic uncertainties.

In figure 19, various DIS Monte Carlo models are compared to the experimental data.

The prediction of Djangoh [37] with SCI [40] and Rapgap [47] are compared to the leading
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Figure 16. The rate 1/σinc · dσLB/dxL for leading proton (dots) and leading neutron production

(circles). The bands show the systematic uncertainties.

proton production rate 1/σinc · dσLP/dxL and to the p2
T slopes. In both MC models, the

QCD radiation was performed either by the parton shower [40] or colour dipole (CDM) [48]

models. None of the DIS Monte Carlo models can reproduce the flat dependence of xL

below the diffractive peak. The MC generator Djangoh, with SCI and MEPS, reproduces

quite well the dependence of b on xL, although the mean values of the slope are lower than

those measured. In the other MC models, the value of the slope is consistent with the

measurements only at high xL.

11 Summary

The cross section of leading proton production for xL > 0.32 and p2
T < 0.5 GeV2 and its

ratio to the inclusive DIS cross section have been measured in the range Q2 > 3 GeV2
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Figure 17. The p2
T -slope, b, as a function of xL for leading proton (dots) and leading neutron

(circles) production. The bands show the systematic uncertainties.

and 45 < W < 225 GeV, with 12.8 pb−1 collected during 1997 with the ZEUS leading

proton spectrometer. The leading proton production cross section as a function of p2
T falls

exponentially with a mean slope 〈b〉 = 6.76 ± 0.07(stat.)+0.63
−0.52(syst.)GeV−2, approximately

independently of xL and of the photon virtuality, Q2. Below the diffractive peak, the xL

distribution is flat, independent of p2
T and Q2.

The ratios of leading proton production to the inclusive DIS yields, rLP(2) and rLP(3),

show no strong dependence on x or Q2. In the range 0.32 < xL < 0.92 and p2
T < 0.5 GeV2,

approximately 24% of DIS events have a leading proton. The ratio 〈rLP(2)〉 averaged

over x rises very slowly with Q2 in the DIS regime. This trend is further confirmed by

measurements at lower Q2. The dependence of the leading proton structure-function F
LP(2)
2

on x and Q2 is approximately the same as that of F2.
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Figure 18. A Regge-based model [13] compared to (a) the measured leading proton production

rate, 1/σinc · dσLP/dxL, and (b) the p2
T -slope, b. The bands show the systematic uncertainties.

The yield of leading protons in DIS is almost twice that of leading neutrons. The

p2
T slopes have a different dependence on xL, and have compatible values in the range

0.65 < xL < 0.8.

The main features of the experimental data are reproduced by a Regge-inspired model.

The results of this study are an important ingredient for modelling leading particle produc-

tion in hadron-hadron interactions, which is not properly reproduced by existing generators.
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Figure 19. Expectations of various Monte Carlo models of DIS, as described in the figure,

compared to (a) the leading proton production rate, 1/σinc · dσLP/dxL, and (b) the p2
T -slope, b.

The bands show the systematic uncertainties.
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B. Löhr, R. Mankel,11 I.-A. Melzer-Pellmann, S. Miglioranzi,12 A. Monta-

nari, T. Namsoo, D. Notz,11 A. Parenti, L. Rinaldi,13 P. Roloff, I. Rubinsky,

U. Schneekloth, A. Spiridonov,14 D. Szuba,15 J. Szuba,16 T. Theedt, J. Ukleja,17
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Padova, Italy e

B.Y. Oh, A. Raval and J.J. Whitmore27

Department of Physics, Pennsylvania State University,

University Park, Pennsylvania 16802, U.S.A.o

Y. Iga

Polytechnic University,

Sagamihara, Japan f

G. D’Agostini, G. Marini and A. Nigro

Dipartimento di Fisica, Università ’La Sapienza’ and INFN,
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[37] G.A. Schüler and H. Spiesberger, DJANGO: the interface for the event generators

HERACLES and LEPTO, in Proceedings of the Workshop on Physics at HERA, Volume 3,

W. Buchmüller and G. Ingelman eds., DESY, Germany (1991), pg. 1419 [SPIRES];

H. Spiesberger, DJANGOH,

http://wwwthep.physik.uni-mainz.de/∼hspiesb/djangoh/djangoh.html.

[38] A. Kwiatkowski, H. Spiesberger and H.-J. Möhring, HERACLES: an event generator for ep
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